Enroll No. _____

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION NOVEMBER – 2016

M.Sc. Mathematics

16PMTCC04 - THEORY OF DIFFERENTIAL EQUATIONS

Duration of Exam – 3 hrs	Semester – I	Max. Marks – 70
--------------------------	--------------	-----------------

<u>Part A</u> (5x2=10 marks) Answer <u>ALL</u> questions

- 1. If u is the complementary function and v is the particular integral for the differential equation y'' + P(x)y' + Q(x)y = 0 then prove that the general solution of the differential equation is y = u + v.
- 2. In usual notations prove that $(1)\frac{d}{dx}(J_0(x)) = -J_1(x)$. $(2)\frac{d}{dx}(xJ_1(x)) = xJ_0(x)$.
- 3. Form partial differential equation by eliminating arbitrary constants a and b from the equation log(az 1) = x + ay + b.
- **4.** Solve the partial differential equation pq = p + q.
- 5. Prove that $(\alpha)_{n+1} = \alpha(\alpha + 1)_n$.

Part B
$$(5X5 = 25 marks)$$

Answer ALL questions

6a. Solve: $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$, given that x(0) = 1, y(0) = 0.

OR

6b. Find general solution of $y'' + x^2y = 0$ in terms of power series in *x*.

7a. State and prove Rodrigue's formula.

OR

7b. Show that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

8a. In usual notations, prove that $(1)\frac{d}{dx}(x^nJ_n(x)) = x^nJ_{n-1}(x)$. $(2)\frac{d}{dx}(x^{-n}J_n(x)) = x^{-n}J_{n+1}(x)$.

OR

8b. Prove that the general solution of Lagrange's equation Pp + Qq = R is $\phi(u, v) = 0$, where ϕ is an arbitrary function and $u(x, y, z) = c_1$ and $v(x, y, z) = c_2$ are two independent solutions of $\frac{dx}{p} = \frac{dy}{0} = \frac{dz}{R}$.

9a. Form partial differential equation by eliminating arbitrary function 'f' from the equation $lx + my + nz = f(x^2 + y^2 + z^2)$

OR

9b. Find complete integral of partial differential equation $z^2p^2y + 6zpxy + 2zqx^2 + 4x^2y = 0$.

10a. Prove that
$$F(\alpha; \beta; x) = \frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} \int_0^1 t^{\alpha-1} (1-t)^{\beta-\alpha-1} e^{xt} dt, \ \beta > \alpha > 0.$$

OR

10b. Show that the equations xp - yq = x, $x^2p + q = xz$ are compatible and find the solution.

<u>Part C</u> (5X7 = 35 marks) Answer <u>ALL</u> questions

11a. Using method of variation of parameters, solve the following differential equations.

(1)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
. (2) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\log x$

OR

11b. Solve in series the differential equation 2x(1-x)y'' + (1-x)y' + 3y = 0 near x = 0.

12a.Express the following functions in terms of Legendre polynomials. (1) $f(x) = x^3 + 2x^2 - x - 3$. (2) $g(x) = x^3 - 5x^2 + x + 2$.

OR

12b. For the Legendre polynomials, prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0; \text{ if } m \neq n. \\ \frac{2}{2n+1}; \text{ if } m = n. \end{cases}$ $(n \in \mathbb{N}).$

13a.Prove that (1)
$$J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right).$$

(2) $J_{-5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \cos x + \frac{3}{x} \sin x \right).$
OR

13b. Solve Gauss hypergeometric equation: $x(1-x)y'' + [\gamma - (\alpha + \beta + 1)x]y' - \alpha\beta y = 0$.

14a. State and derive Charpit's Auxiliary Equations.

OR

14b. State and derive Jacobi's Auxiliary Equations.

15a. Find three successive approximations of the solution of the equation $\frac{dy}{dx} = z, \frac{dz}{dx} = x^3(y+z), y = 1, z = \frac{1}{2}$ when x = 0 using Picard's method.

OR

15b. Prove that $F(\alpha, \beta; \gamma; x) = \frac{\alpha\beta}{\gamma} F(\alpha + 1, \beta + 1; \gamma + 1; x)$. Hence deduce that $\frac{d^n}{dx^n} F(\alpha, \beta; \gamma; x) = \frac{(\alpha)_n(\beta)_n}{(\gamma)_n} F(\alpha + n, \beta + n; \gamma + n; x)$.